Mitochondrial Dysfunction: Pathophysiology and Mitochondria-Targeted Drug Delivery Approaches

Image credit: MDPI

Abstract

Mitochondria are implicated in a wide range of functions apart from ATP generation, and, therefore, constitute one of the most important organelles of cell. Since healthy mitochondria are essential for proper cellular functioning and survival, mitochondrial dysfunction may lead to various pathologies. Mitochondria are considered a novel and promising therapeutic target for the diagnosis, treatment, and prevention of various human diseases including metabolic disorders, cancer, and neurodegenerative diseases. For mitochondria-targeted therapy, there is a need to develop an effective drug delivery approach, owing to the mitochondrial special bilayer structure through which therapeutic molecules undergo multiple difficulties in reaching the core. In recent years, various nanoformulations have been designed such as polymeric nanoparticles, liposomes, inorganic nanoparticles conjugate with mitochondriotropic moieties such as mitochondria-penetrating peptides (MPPs), triphenylphosphonium (TPP), dequalinium (DQA), and mitochondrial protein import machinery for overcoming barriers involved in targeting mitochondria. The current approaches used for mitochondria-targeted drug delivery have provided promising ways to overcome the challenges associated with targeted-drug delivery. Herein, we review the research from past years to the current scenario that has identified mitochondrial dysfunction as a major contributor to the pathophysiology of various diseases. Furthermore, we discuss the recent advancements in mitochondria-targeted drug delivery strategies for the pathologies associated with mitochondrial dysfunction

Publication
MDPI Journal pharmaceutics
Click the Cite button above to demo the feature to enable visitors to import publication metadata into their reference management software.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Ayesha Aiman
Ayesha Aiman
PMRF Research Scholar